
Plasticity and 
Deformation Processes

Plastic deformation and Yielding criteria



Plasticity

Just as the mechanical properties of a viscoelastic material vary with temperature and strain rate, 
so do viscoplasticity. Generally plastic deformations are not sensitive to strain rate at low T

Brittle failure is characterized by low strain and rupture that occurs at the highest stress reached.

Ductile failure involves large plastic deformation after yielding, until rupture

Yielded materials exhibit necking and cold drawing. Necking occurs when the cross section is 
reduced abruptly. 
After necking material continues to extend, with the molecules reorienting themselves in the 
necked region at about constant force. This process of cold drawing produces a material, with its 
molecules now in a preferred orientation, that is much stiffer.



The stress-strain diagram of a material is obtained by 
conducting a tensile test on the specimen of material

The initial portion of the stress-strain diagram  shows 
proportionality between the stress applied and the 
resultant strain according to the Hooke’s law

𝜎 = 𝐸𝜀

The largest value of the stress for which Hooke’s law can 
be used for a material is the proportional limit

For ductile materials with a well defined yield point, it 
coincides with the yield point, for others Hooke’s law can 
be used for stress values slightly larger than the 
proportional limit (0.2% off-set yield point)

Physical properties of materials like strength, ductility, 
corrosion resistance may be significantly affected by 
alloying, heat treatment and manufacturing processes

Although the variation of stress with strain for pure iron 
and different grades of steel is great and show different 
yield strength, fracture strength and ductility, they posses 
the same stiffness



The deformation and failure of plastic materials are hard to characterize because of the non-linear 
stress-strain relationships and changes in the structure of the material during deformation

The plastic behavior can be simplified by considering an idealized elastoplastic material model 
which is similar to mild steel

The elastoplastic material strains a small amount elastically at loads below yield stress

When stresses reach the yield strength of the material, it starts yielding and keeps deforming 
plastically under a constant load

Unloading takes place along a straight line parallel to the elastic region when the load is removed 
and strain energy is recovered

The segment in the horizontal axis represents the strain corresponding to the permanent 
deformation.



The distribution of stresses on a surface of an elastoplastic material during plastic deformation is as 
follows:

The shaded area under the stress distribution curve represents the load applied. So the area and 
the value of maximum stress should increase as the load increases.

As the load is increased beyond the yield stress, the stress distribution curve flattens in the vicinity 
of a void since the stress in the material exceeded the value of yield strength.

The plastic zone where yield takes place keeps expanding as the load is further increased, until it 
reaches the edges of the plate.

At that point the distribution of stresses across the material is uniform above the yield stress and 
the load is the largest which may be applied to the bar without causing rupture.



A mathematical theory on the fracture behavior of plastic materials is not present since it usually 
occurs at high strains, which are mathematically difficult to formulize

Fracture mechanics of brittle materials as described by Griffith serves as a reference to understand 
the failure of plastics

According to Griffith, a fracture results in the formation of two new surfaces on each side of the 
crack and that the formation of these surfaces requires energy. This energy is stored as changes in 
bond length throughout the rest of the material as it is stretched

Fracture requires the transmission of this energy to the fracture surfaces, at the same time relaxing 
the strain in the area from which energy has been released

Propagation of the crack depends on the crack length 
The critical length should be exceeded for the surrounding material to transmit energy to cause 
brittle fracture.



where
determines the magnitude of stress at the crack tip

Based on Griffith’s theory, two general criteria need to be satisfied for a piece of material to 
fracture:

• The bonds at the crack tip must be stressed to the point of failure
(the critical stress intensity, KC must be reached)

• There must be sufficient elastic strain energy (work of fracture) available at the tip of the crack 
to propagate it to the surface 

In engineering, the critical stress intensity 𝐾𝐼𝑐 is known as the fracture toughness

Toughness of a material is important to resist the initiation and propagation of a crack.
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Stress field in the vicinity of a sharp crack tip 
as a function of 𝑟 and 𝜃: 

𝐾𝐼 = 𝜎𝑎𝑌 𝜋𝑐

Irwin 
equation



The subscript I in KI is associated with 
tensile loading

Stress intensity factors exist for other types 
of loading

These stress intensity factors are additive

The factor for a complicated system of loads 
can be derived from the addition of the 
factors determined for each load separately

Type I loading is the most common type that 
leads to brittle failure



The second condition:
For an increment of crack extension, the amount of strain energy released
must be greater than or equal to that required for the surface energy of the
two new crack faces

or

where 𝑈𝑠 is the strain energy, 𝑈𝛾 is the surface energy, 

and dc is the crack length increment

Griffith showed that show the strain energy released by 
introducing a double-ended crack of length 2c in an infinite 
plate of 1 m width under a uniformly applied stress 𝜎𝑎 is

The total surface energy for two surfaces of 1 m width and length 2c is

where γ is the fracture surface energy of the solid. It may additionally involve energy dissipative 
mechanisms such as microcracking, phase transformations, and plastic deformation
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So taking the derivative of strain and fracture surface energies with respect to c gives the strain 
energy release rate and the surface energy creation rate (J/m)

The strain energy release rate per increment of crack length
is a linear function of crack length
The required rate of fracture surface energy per increment
of crack length is a constant

The relationships between surface energy, strain energy, 
and crack length:
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The stress intensity (not KI) at the crack tip (r=0) is infinity according to the Irwin equation

In practice, the stress at the crack tip is limited to at least the yield strength of the material

This is the result of the plastic zone within a certain distance of the crack tip for metals
For ceramics, nonlinear elastic deformation consumes energy

The elastic material outside the plastic zone transmits stress to
the material inside the zone 

The plastic zone is usually small (σyy is proportional to 1/r1/2)

So the strain energy release rate is not affected much by the
energy dissipation mechanisms within the zone 



Energy in a plastic material can be used up or dissipated before it can reach the crack tip to 
contribute to the new fracture surface

Rubber fibers and particles are added to various polymers for additional energy storage mechanism 
and the resultant toughening effect

Toughness of metals results from dissipation of far more energy than is needed for propagation of 
the crack by slippage of crystal planes or by dislocation motion

Ductility results from the plastic flow of material as the dislocation move at applied stresses below 
the ultimate strength

Irwin modified Griffith’s equation to take into account the non-reversible energy absorption 
mechanisms within the plastic zone:

The right hand side of the equation is called the crack resistance which indicates the minimum 
energy required for crack extension
This minimum energy is called the work of fracture which is a measure of toughness
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Damping is the measure of viscous dissipation of mechanical energy in the microstructure by 
various mechanisms consisting of stress-induced movement of defects

Damping or Internal friction is defined as the capacity of a material to convert its mechanical 
energy of vibration into heat that is dissipated in the material (same as tan δ)

Point defects give rise to damping in the range of low to intermediate levels
Line defects (dislocations) give rise to damping levels in the intermediate to high range
Planar defects (boundaries of various types) give rise to damping levels in the high range

They generally operate in two major mechanisms:
• Dynamic hysteresis
produced by the stress-aided ordering of defects overcoming local barriers by thermal activation
For example, diffusion-controlled rearrangement of solute atoms

• Static hysteresis
Produced by an "unpinning" process, or 
"breakaway“ process, at the defect level
For example in the case of metals, 
the mechanical unpinning of dislocations
After a linear elastic response to the 
stress, a breakaway strain is produced 
at a critical value of the stress for 
stress-induced movement of pinned 
dislocations.
As the unpinned dislocations collapse 
elastically during unloading, they become
repinned at a much lower stress



Materials behave elastically until the deforming force increases beyond the yield stress. At that point, the material 
is irreversibly and permanently deformed. 

Irreversible deformation at normal temperatures cause the dislocations to accumulate, interact with one another, 
and serve as pinning points or obstacles that significantly impede their motion. This leads to an increase in the 
yield strength of the material and a subsequent decrease in ductility.

Its extent is dependent on the material and the dislocation density

Because dislocation motion is hindered, plastic deformation cannot occur at normal stresses. The yield stress 
increases as a result.
At a stress lower than the yield stress, a cold-worked material will continue to deform using the only mechanism 
available: elastic deformation and the modulus of elasticity is unchanged. With increasing stress the strain-field 
interactions are overcome and plastic deformation resumes. It has now become a brittle material. If dislocation 
motion and plastic deformation have been hindered enough by dislocation accumulation, and stretching of 
electronic bonds and elastic deformation have reached their limit, a third mode of deformation occurs: fracture.



Increase in the number of dislocations is a quantification of work hardening. Plastic deformation 
occurs as a consequence of work being done on and energy added to a material. In addition, the 
energy is almost always applied fast enough and in large enough magnitude to not only move 
existing dislocations, but also to produce a great number of new dislocations.

∆𝜏 = 𝐺𝑏𝜌1/2

Work hardening has a half root dependency on the number of dislocations. The material exhibits 
high strength if there are either high levels of dislocations (greater than 1014 dislocations per m2) or 
no dislocations. A moderate number of dislocations (between 107 and 109 dislocations per m2) 
typically results in low strength

Work hardening phenomenon is formulated as a power law relationship between the stress and 
the amount of plastic strain:

𝜎 = 𝐾𝜖𝑝
𝑛 or      𝜎 = 𝜎𝑦 + 𝐾𝜖𝑝

𝑛

where σ is the stress, σy is the yield stress, K is the strength index or strength coefficient, εp is the 
plastic strain and n is the strain hardening exponent. 

https://en.wikipedia.org/wiki/File:Work_HArd.png
https://en.wikipedia.org/wiki/File:Work_HArd.png


Elastoplastic material is a model for easily plastically deformed materials (e.g. at high T) that 
simplifies the calculations significantly
In practice all materials harden to an extent and mostly non-linearly without a definite hardening 
modulus

Calculation of the plastic deformations similarly to calculation of elastic deformations using Hooke’s 
law is only possible by using a dynamic modulus which is a definite function of applied strain

Deformation theory helps us do that once we determine the yielding condition and the effective 
stress state



The tangent modulus K is the slope of the stress-strain curve in the plastic region and in general it 
changes during a deformation

At any instant of strain, the increment in stress dσ is related to the increment in true strain dε by

The strain increment after yield consists of both elastic and plastic strains

The stress and plastic strain increments are related by the plastic modulus H:

Such that
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Just like we model viscoelastic behavior with 
combinations of perfectly elastic springs and 
perfectly viscous dashpots, we can model the 
behavior of plastic materials using friction blocks in 
place of dashpots

The elastoplastic model incorporates a friction 
block with a yield stress Y, connected in series with 
a free spring with modulus E

The spring extends elastically until a stress of Y is 
applied. Then there is only the movement of the 
friction block and plastic deformation. The stress 
cannot exceed the yield stress. If unloaded the 
block stops moving, the spring contracts and the 
stress returns to zero, leaving a permanent strain



The elastoplastic model with linear strain 
hardening is a more realistic model for metals

It incorporates a second spring with stiffness H,
parallel with the friction block and representing 
strain hardening

An increasing stress needs to applied after the 
yield stress Y is reached in order to keep the 
block moving

Elastic strain continues to occur due to further 
elongation of the free spring 

The stress is then consumed by the plastic 
deformation by the moving block and the 
remaining stress σ-Y is carried by the hardening 
spring

Upon unloading the block locks, the stress in 
the hardening spring remains constant while 
the free spring contracts

At zero stress there is negative stress at the 
block as a response to the strain in the spring 𝜀 = 𝜀𝑒 + 𝜀𝑝 =

𝜎

𝐸
+
𝜎 − 𝑌

𝐻

𝜀 = 𝜀𝑒 =
𝜎

𝐸



Example – Consider the plasticity model shown

Draw the stress-strain diagram
What are the elastic modulus, yield stress, tangent and 
plastic moduli?



Yielding depends on the magnitude of the normal and shear stresses applied to a material and also 
on the local stresses generated at some plane (slip-plane) within the material

Consider a planar material stressed in two directions

A state of plane stress exists at a point Q with 𝜎𝑧 = 𝜏𝑧𝑥 = 𝜏𝑧𝑦 = 0. The state of plane stress is 

defined by the stress components 𝜎𝑥 , 𝜎𝑦, 𝜏𝑥𝑦 associated with the material shown:

If the material is rotated through an angle 𝜃 about the z axis, the stress components change to 
𝜎𝑥
′, 𝜎𝑦

′, 𝜏𝑥𝑦
′ which can be expressed in terms of 𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦 and 𝜃



Consider a prismatic element with faces respectively 
perpendicular to the x, y and x’ axes:

If the area of the oblique face is ΔA, the areas of the 
vertical and horizontal faces are equal to ΔA cosθ, and ΔA 
sinθ respectively.

The mechanical equilibrium along the x’ and y’ axes 
require that

 𝐹𝑥′ = 0, 𝜎𝑥
′∆𝐴 − 𝜎𝑥 ∆𝐴 cos 𝜃 cos 𝜃 −

𝜏𝑥𝑦 ∆𝐴 cos𝜃 sin 𝜃 − 𝜎𝑦 ∆𝐴 sin 𝜃 sin 𝜃 −

𝜏𝑥𝑦 ∆𝐴 sin 𝜃 cos 𝜃 = 0

 𝐹𝑦′ = 0, 𝜏𝑥′𝑦′∆𝐴 + 𝜎𝑥 ∆𝐴 cos 𝜃 sin 𝜃 −

𝜏𝑥𝑦 ∆𝐴 cos𝜃 cos 𝜃 − 𝜎𝑦 ∆𝐴 sin 𝜃 cos 𝜃 +

𝜏𝑥𝑦 ∆𝐴 sin 𝜃 sin 𝜃 = 0

The first equation is solved for 𝜎𝑥
′ and the second for 𝜏𝑥′𝑦′

as

𝜎𝑥
′ = 𝜎𝑥 cos

2 𝜃 + 𝜎𝑦 sin
2 𝜃 + 2𝜏𝑥𝑦 sin 𝜃 cos 𝜃

𝜏𝑥′𝑦′ = − 𝜎𝑥 − 𝜎𝑦 sin 𝜃 cos 𝜃 + 𝜏𝑥𝑦 cos
2 𝜃 − sin2 𝜃



After simplifications using trigonometric substitutions we obtain the normal and shear stresses on 
the rotated material as

𝜎𝑥
′ =

𝜎𝑥 + 𝜎𝑦

2
+
𝜎𝑥 − 𝜎𝑦

2
cos 2𝜃 + 𝜏𝑥𝑦 sin 2𝜃

𝜎𝑦
′ =

𝜎𝑥 + 𝜎𝑦

2
−
𝜎𝑥 − 𝜎𝑦

2
cos 2𝜃 − 𝜏𝑥𝑦 sin 2𝜃

𝜏𝑥′𝑦′ = −
𝜎𝑥 − 𝜎𝑦

2
sin 2𝜃 + 𝜏𝑥𝑦 cos 2𝜃

The expression for the normal stress 𝜎𝑦
′ is obtained by replacing θ by the angle θ+90 that the y’ 

axis forms with the x axis.

Adding the two normal stresses we see that

𝜎𝑥
′ + 𝜎𝑦

′ = 𝜎𝑥 + 𝜎𝑦

In the case of plane stress, the sum of the normal stresses exerted on a cubic material is 
independent of the orientation of the material since 𝜎𝑧 = 𝜎𝑧′ = 0



The equations obtained for the normal and shear stresses in the rotated material under plane 
stress condition are the parametric equations of a circle

If we plot a point M in the rectangular axes with the coordinates (𝜎𝑥
′, 𝜏𝑥′𝑦′) for any given value of 

the parameter θ, all the other possible points will lie on a circle.

𝜎𝑥
′ =

𝜎𝑥 + 𝜎𝑦

2
+
𝜎𝑥 − 𝜎𝑦

2
cos 2𝜃 + 𝜏𝑥𝑦 sin 2𝜃

𝜏𝑥′𝑦′ = −
𝜎𝑥 − 𝜎𝑦

2
sin 2𝜃 + 𝜏𝑥𝑦 cos 2𝜃

The angle θ in the equations can be eliminated by algebraic simplifications and addition of the two 
equations:

𝜎𝑥
′ −

𝜎𝑥 + 𝜎𝑦

2

2

+ 𝜏𝑥′𝑦′
2 =

𝜎𝑥 − 𝜎𝑦

2

2

+ 𝜏𝑥𝑦
2

Where
𝜎𝑥+𝜎𝑦

2
= 𝜎𝑎𝑣𝑒 and 

𝜎𝑥−𝜎𝑦

2

2
+ 𝜏𝑥𝑦

2 = 𝑅2

So 𝜎𝑥
′ − 𝜎𝑎𝑣𝑒

2 + 𝜏𝑥′𝑦′
2 = 𝑅2

Which is the equation of a circle of radius R centered at the point C of 
coordinates (𝜎𝑎𝑣𝑒 , 0)



The point A where the circle intersects the horizontal axis is the maximum value of the normal 
stress 𝜎𝑥

′ and the other intersection point B is the minimum value. Both points correspond to a 
zero value of shear stress 𝜏𝑥′𝑦′. 

These are the principle stresses.

Since 𝜎𝑚𝑎𝑥 = 𝜎𝑎𝑣𝑒 + 𝑅 𝜎𝑚𝑖𝑛 = 𝜎𝑎𝑣𝑒 − 𝑅

𝜎𝑚𝑎𝑥,𝑚𝑖𝑛 =
𝜎𝑥 + 𝜎𝑦

2
±

𝜎𝑥 − 𝜎𝑦

2

2

+ 𝜏𝑥𝑦
2

The rotation angles that produce the principal stresses with no shear stress is obtained from the 
equation of shear stress

𝜏𝑥′𝑦′ = −
𝜎𝑥 − 𝜎𝑦

2
sin 2𝜃 + 𝜏𝑥𝑦 cos 2𝜃 = 0

tan 2𝜃𝑝 =
2𝜏𝑥𝑦

𝜎𝑥 − 𝜎𝑦

This equation gives two 𝜃𝑝 values that are 90 apart. Either of them can be 

used to determine the orientation of the corresponding rotated plane. 
These planes are the principal planes of stress at point Q



The points D and E are located on the vertical diameter of the 
circle corresponding to the largest numerical value of the shear 
stress 𝜏𝑥′𝑦′. These points have the same normal stresses of 

𝜎𝑎𝑣𝑒. So the rotation that produces the maximum shear 
stresses can be obtained from the normal stress equations.

𝜎𝑥
′ = 𝜎𝑎𝑣𝑒 =

𝜎𝑥 + 𝜎𝑦

2
+
𝜎𝑥 − 𝜎𝑦

2
cos 2𝜃 + 𝜏𝑥𝑦 sin 2𝜃

=
𝜎𝑥 + 𝜎𝑦

2

tan 2𝜃𝑠 = −
𝜎𝑥 − 𝜎𝑦

2𝜏𝑥𝑦

This equation gives two 𝜃𝑠 values that are 90 apart. Either of 
them can be used to determine the orientation of 
corresponding rotated plane that produces the maximum 
shear stress which is equal to

𝜏𝑚𝑎𝑥 = 𝑅 =
𝜎𝑥 − 𝜎𝑦

2

2

+ 𝜏𝑥𝑦
2



The normal stress corresponding to the condition of maximum shear stress is 

𝜎𝑥
′ = 𝜎𝑎𝑣𝑒 =

𝜎𝑥 + 𝜎𝑦

2

Also 

tan 2𝜃𝑠 = −
𝜎𝑥 − 𝜎𝑦

2𝜏𝑥𝑦
= − tan 2𝜃𝑝

−1
= −

2𝜏𝑥𝑦

𝜎𝑥 − 𝜎𝑦

−1

This means that the angles 𝜃𝑠 and 𝜃𝑝 are 45 apart

So the planes of maximum shear stress are oriented at 45 to the principal planes

Example – Determine the principal planes, principle stresses, maximum shear stress and the 
corresponding normal stress for the state of plane stress shown



Yield criteria for ductile materials under plane stress

When a ductile material is under uniaxial stress, the value of the normal stress 𝜎𝑥 which will cause 
the material to yield can be determined simply from a stress-strain diagram obtained by a tensile 
test.

The material will deform plastically when 𝜎𝑥 > 𝜎𝑌𝑖𝑒𝑙𝑑

On the other hand when a material is in a state of multiaxial stress, the material will yield when the 
maximum value of the shear stress exceeds the corresponding value of the shear stress in a tensile-
test specimen as it starts to yield.

Maximum shear stress criterion is based on the observation that yield in ductile materials is caused 
by slippage of the material along oblique surfaces and is due primarily to shear stresses.

In the plane stress condition the material can be represented as a point under principal stresses 
𝜎𝑎 , 𝜎𝑏



Recall that the maximum value of shear stress at a point under a centric axial load is equal to half 
the value of the corresponding normal axial stress.

Thus at yielding

𝜏𝑚𝑎𝑥 =
1

2
𝜎𝑌

Also for plane stress condition if the principle stresses are both positive or both negative, the 

maximum value of the shear stress is equal to 
1

2
𝜎𝑚𝑎𝑥

Therefore 𝜎𝑎 > 𝜎𝑌 or 𝜎𝑏 > 𝜎𝑌

If the maximum stress is positive and  the minimum stress negative, the maximum value of the 

shear stress is equal to 
1

2
( 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 )

Therefore ( 𝜎𝑎 − 𝜎𝑏 ) > 𝜎𝑌

These relations produce a hexagon in the xy plane, called Tresca’s hexagon. Any given state of stress 
will be represented in the figure by a point.



Maximum distortion energy criterion is based on the determination of the distortion energy in a 
given material, which is the energy consumed by a change in the shape of the material.

Also called von Mises criterion, it states that a material will yield when the maximum value of the 
distortion energy per unit volume exceeds the distortion energy per unit volume required to cause 
yield in a tensile test specimen.

The distortion energy in an isotropic material under plane stress is

𝑈𝑑 =
1

6𝐺
𝜎𝑎

2 − 𝜎𝑎𝜎𝑏 + 𝜎𝑏
2

In the case of a tensile test specimen yielding at 𝜎𝑌

𝑈𝑌 =
1

6𝐺
𝜎𝑌

2

Thus the maximum distortion energy criterion indicates that the material yields when 𝑈𝑑 > 𝑈𝑌:

𝜎𝑎
2 − 𝜎𝑎𝜎𝑏 + 𝜎𝑏

2 > 𝜎𝑌
2

This equation produces an ellipse in the principal stress plane



The von Mises yield criterion is given by 

𝜎1 − 𝜎2
2 + 𝜎2 − 𝜎3

2 + 𝜎3 − 𝜎1
2 = 2𝜎𝑦

Or

𝜎𝑥 − 𝜎𝑦
2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 + 𝜏𝑥𝑦
2 = 2𝜎𝑦

In terms of effective stress the criterion is

𝜎𝑒𝑓𝑓 =
1

2
𝜎1 − 𝜎2

2 + 𝜎2 − 𝜎3
2 + 𝜎3 − 𝜎1

2 = 𝜎𝑦

𝜎𝑒𝑓𝑓 =
2

2
𝜎𝑥 − 𝜎𝑦

2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 + 𝜏𝑥𝑦
2 = 𝜎𝑦

For plane states of stress, the yield condition is the interaction of the cylinder with the principal 
stress plane, which is a yield ellipse



The von Mises yield criterion is visualized as a circular cylinder in the stress space

The axis of the cylinder passes through the origin of the coordinates for unyielded material

It is inclined equal amount to the three axes and represents pure hydrostatic stress for elastic 
deformations.



The effective stress is the uniaxial stress that is equally distant from the yield surface or located on 
it

The effective stress or the stress intensity for an elastic material is expressed as

𝜎𝑒𝑓𝑓 =
2

2
𝜎𝑥 − 𝜎𝑦

2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 + 𝜏𝑥𝑦
2

And the effective strain as

𝜀𝑒𝑓𝑓 =
2

2 1 + 𝜈
𝜀𝑥 − 𝜀𝑦

2
+ 𝜀𝑦 − 𝜀𝑧

2
+ 𝜀𝑧 − 𝜀𝑥

2 +
3

2
𝛾𝑦𝑧

2 + 𝛾𝑧𝑥
2 + 𝛾𝑥𝑦

2

And 𝜎𝑒𝑓𝑓 = 𝐸𝜀𝑒𝑓𝑓



Yield criteria for deformation of metals under plane stress

The data for the mild steel and Cr-V steel which behave in a ductile manner agree well with the 
octahedral shear stress (von Mises) criterion
Data for cast iron which behaves in a brittle manner, agrees better with the maximum principal 
stress criterion:

𝜎1 = 𝜎𝑦



Brittle materials fail suddenly in a tensile test by rupture without any prior yielding.

When a brittle material is under uniaxial tensile stress, the value of the normal stress which causes 
it to fail is equal to the ultimate strength of the material as determined from a tensile test.

When a brittle material is under plane stress, the principal stresses are compared to the ultimate 
strength obtained from the uniaxial tensile test.

Maximum principal stress criterion states that a brittle material will fail when the maximum normal 
stress exceeds the ultimate strength obtained from the uniaxial tensile test:

𝜎𝑎 > 𝜎𝑈 or 𝜎𝑏 > 𝜎𝑈

This criterion forms a square area centered on the xy plane. The criterion is based on the 
assumption that the ultimate strength of materials under tension and compression are equal, 
which is an overestimation for most materials as the presence of cracks and flaws often weaken the 
material under tension



Example – Evaluate the yielding stress condition for a ductile cast iron using maximum shear stress, maximum 
principal stress and maximum distortion energy criteria.

𝜎𝑎 > 𝜎𝑌 or       𝜎𝑏 > 𝜎𝑌 or      ( 𝜎𝑎 − 𝜎𝑏 ) > 𝜎𝑌

𝜎𝑎 > 𝜎𝑈 or 𝜎𝑏 > 𝜎𝑈

𝜎𝑎
2 − 𝜎𝑎𝜎𝑏 + 𝜎𝑏

2 > 𝜎𝑌
2



Prediction of yielding under multiaxial loading according to the maximum shear stress criterion involves the 
analysis of the octahedral planes

There are eight octahedral planes making equal angles with the principal 
stress directions
The shearing stress on these planes is given by

𝜏𝑜𝑐𝑡 =
1

3
𝜎1 − 𝜎2

2 + 𝜎2 − 𝜎3
2 + 𝜎3 − 𝜎1

2

Or with nonprinciple stresses:

𝜏𝑜𝑐𝑡 =
1

3
𝜎𝑥 − 𝜎𝑦

2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 + 𝜏𝑥𝑦
2

The shear strain acting on an octahedral plane is given by

𝛾𝑜𝑐𝑡 =
2

3
𝜀1 − 𝜀2

2 + 𝜀2 − 𝜀3
2 + 𝜀3 − 𝜀1

2

Or

𝛾𝑜𝑐𝑡 =
2

3
𝜀𝑥 − 𝜀𝑦

2
+ 𝜀𝑦 − 𝜀𝑧

2
+ 𝜀𝑧 − 𝜀𝑥

2 +
3

2
𝛾𝑦𝑧

2 + 𝛾𝑧𝑥
2 + 𝛾𝑥𝑦

2



Deformation and plastic behavior of metals

Effect of strain rate at high T



Effect of strain rate at high T



Effect of strain rate at low T



Effect of strain rate on yield strength



Effect of strain rate on yield strength, UTS


